Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 14(9)2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37761941

RESUMO

Biomarker-based cancer identification and classification tools are widely used in bioinformatics and machine learning fields. However, the high dimensionality of microarray gene expression data poses a challenge for identifying important genes in cancer diagnosis. Many feature selection algorithms optimize cancer diagnosis by selecting optimal features. This article proposes an ensemble rank-based feature selection method (EFSM) and an ensemble weighted average voting classifier (VT) to overcome this challenge. The EFSM uses a ranking method that aggregates features from individual selection methods to efficiently discover the most relevant and useful features. The VT combines support vector machine, k-nearest neighbor, and decision tree algorithms to create an ensemble model. The proposed method was tested on three benchmark datasets and compared to existing built-in ensemble models. The results show that our model achieved higher accuracy, with 100% for leukaemia, 94.74% for colon cancer, and 94.34% for the 11-tumor dataset. This study concludes by identifying a subset of the most important cancer-causing genes and demonstrating their significance compared to the original data. The proposed approach surpasses existing strategies in accuracy and stability, significantly impacting the development of ML-based gene analysis. It detects vital genes with higher precision and stability than other existing methods.


Assuntos
Neoplasias , Transcriptoma , Transcriptoma/genética , Perfilação da Expressão Gênica , Algoritmos , Benchmarking , Análise por Conglomerados , Neoplasias/diagnóstico , Neoplasias/genética
2.
Diagnostics (Basel) ; 13(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36766662

RESUMO

COVID-19 is a severe respiratory contagious disease that has now spread all over the world. COVID-19 has terribly impacted public health, daily lives and the global economy. Although some developed countries have advanced well in detecting and bearing this coronavirus, most developing countries are having difficulty in detecting COVID-19 cases for the mass population. In many countries, there is a scarcity of COVID-19 testing kits and other resources due to the increasing rate of COVID-19 infections. Therefore, this deficit of testing resources and the increasing figure of daily cases encouraged us to improve a deep learning model to aid clinicians, radiologists and provide timely assistance to patients. In this article, an efficient deep learning-based model to detect COVID-19 cases that utilizes a chest X-ray images dataset has been proposed and investigated. The proposed model is developed based on ResNet50V2 architecture. The base architecture of ResNet50V2 is concatenated with six extra layers to make the model more robust and efficient. Finally, a Grad-CAM-based discriminative localization is used to readily interpret the detection of radiological images. Two datasets were gathered from different sources that are publicly available with class labels: normal, confirmed COVID-19, bacterial pneumonia and viral pneumonia cases. Our proposed model obtained a comprehensive accuracy of 99.51% for four-class cases (COVID-19/normal/bacterial pneumonia/viral pneumonia) on Dataset-2, 96.52% for the cases with three classes (normal/ COVID-19/bacterial pneumonia) and 99.13% for the cases with two classes (COVID-19/normal) on Dataset-1. The accuracy level of the proposed model might motivate radiologists to rapidly detect and diagnose COVID-19 cases.

3.
Biomed Res Int ; 2022: 1776082, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35127939

RESUMO

BACKGROUND: Medulloblastoma (MB) is the most occurring brain cancer that mostly happens in childhood age. This cancer starts in the cerebellum part of the brain. This study is designed to screen novel and significant biomarkers, which may perform as potential prognostic biomarkers and therapeutic targets in MB. METHODS: A total of 103 MB-related samples from three gene expression profiles of GSE22139, GSE37418, and GSE86574 were downloaded from the Gene Expression Omnibus (GEO). Applying the limma package, all three datasets were analyzed, and 1065 mutual DEGs were identified including 408 overexpressed and 657 underexpressed with the minimum cut-off criteria of ∣log fold change | >1 and P < 0.05. The Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and WikiPathways enrichment analyses were executed to discover the internal functions of the mutual DEGs. The outcomes of enrichment analysis showed that the common DEGs were significantly connected with MB progression and development. The Search Tool for Retrieval of Interacting Genes (STRING) database was used to construct the interaction network, and the network was displayed using the Cytoscape tool and applying connectivity and stress value methods of cytoHubba plugin 35 hub genes were identified from the whole network. RESULTS: Four key clusters were identified using the PEWCC 1.0 method. Additionally, the survival analysis of hub genes was brought out based on clinical information of 612 MB patients. This bioinformatics analysis may help to define the pathogenesis and originate new treatments for MB.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Biomarcadores , Neoplasias Cerebelares/genética , Biologia Computacional/métodos , Bases de Dados Genéticas , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Meduloblastoma/genética , Mapas de Interação de Proteínas/genética
4.
Biomed Res Int ; 2022: 5908402, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35071597

RESUMO

Esophageal carcinoma (EsC) is a member of the cancer group that occurs in the esophagus; globally, it is known as one of the fatal malignancies. In this study, we used gene expression analysis to identify molecular biomarkers to propose therapeutic targets for the development of novel drugs. We consider EsC associated four different microarray datasets from the gene expression omnibus database. Statistical analysis is performed using R language and identified a total of 1083 differentially expressed genes (DEGs) in which 380 are overexpressed and 703 are underexpressed. The functional study is performed with the identified DEGs to screen significant Gene Ontology (GO) terms and associated pathways using the Database for Annotation, Visualization, and Integrated Discovery repository (DAVID). The analysis revealed that the overexpressed DEGs are principally connected with the protein export, axon guidance pathway, and the downexpressed DEGs are principally connected with the L13a-mediated translational silencing of ceruloplasmin expression, formation of a pool of free 40S subunits pathway. The STRING database used to collect protein-protein interaction (PPI) network information and visualize it with the Cytoscape software. We found 10 hub genes from the PPI network considering three methods in which the interleukin 6 (IL6) gene is the top in all methods. From the PPI, we found that identified clusters are associated with the complex I biogenesis, ubiquitination and proteasome degradation, signaling by interleukins, and Notch-HLH transcription pathway. The identified biomarkers and pathways may play an important role in the future for developing drugs for the EsC.


Assuntos
Carcinoma , Neoplasias Esofágicas , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma/genética , Biologia Computacional/métodos , Bases de Dados Genéticas , Neoplasias Esofágicas/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Ontologia Genética , Redes Reguladoras de Genes/genética , Humanos , Mapas de Interação de Proteínas/genética
5.
Comput Biol Med ; 139: 105014, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34781234

RESUMO

Coronavirus disease-19 (COVID-19) is a severe respiratory viral disease first reported in late 2019 that has spread worldwide. Although some wealthy countries have made significant progress in detecting and containing this disease, most underdeveloped countries are still struggling to identify COVID-19 cases in large populations. With the rising number of COVID-19 cases, there are often insufficient COVID-19 diagnostic kits and related resources in such countries. However, other basic diagnostic resources often do exist, which motivated us to develop Deep Learning models to assist clinicians and radiologists to provide prompt diagnostic support to the patients. In this study, we have developed a deep learning-based COVID-19 case detection model trained with a dataset consisting of chest CT scans and X-ray images. A modified ResNet50V2 architecture was employed as deep learning architecture in the proposed model. The dataset utilized to train the model was collected from various publicly available sources and included four class labels: confirmed COVID-19, normal controls and confirmed viral and bacterial pneumonia cases. The aggregated dataset was preprocessed through a sharpening filter before feeding the dataset into the proposed model. This model attained an accuracy of 96.452% for four-class cases (COVID-19/Normal/Bacterial pneumonia/Viral pneumonia), 97.242% for three-class cases (COVID-19/Normal/Bacterial pneumonia) and 98.954% for two-class cases (COVID-19/Viral pneumonia) using chest X-ray images. The model acquired a comprehensive accuracy of 99.012% for three-class cases (COVID-19/Normal/Community-acquired pneumonia) and 99.99% for two-class cases (Normal/COVID-19) using CT-scan images of the chest. This high accuracy presents a new and potentially important resource to enable radiologists to identify and rapidly diagnose COVID-19 cases with only basic but widely available equipment.


Assuntos
COVID-19 , Aprendizado Profundo , Pneumonia Viral , Algoritmos , Humanos , SARS-CoV-2 , Tomografia Computadorizada por Raios X , Raios X
6.
Comput Biol Med ; 139: 104985, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34735942

RESUMO

Cervical cancer (CC) is the most common type of cancer in women and remains a significant cause of mortality, particularly in less developed countries, although it can be effectively treated if detected at an early stage. This study aimed to find efficient machine-learning-based classifying models to detect early stage CC using clinical data. We obtained a Kaggle data repository CC dataset which contained four classes of attributes including biopsy, cytology, Hinselmann, and Schiller. This dataset was split into four categories based on these class attributes. Three feature transformation methods, including log, sine function, and Z-score were applied to these datasets. Several supervised machine learning algorithms were assessed for their performance in classification. A Random Tree (RT) algorithm provided the best classification accuracy for the biopsy (98.33%) and cytology (98.65%) data, whereas Random Forest (RF) and Instance-Based K-nearest neighbor (IBk) provided the best performance for Hinselmann (99.16%), and Schiller (98.58%) respectively. Among the feature transformation methods, logarithmic gave the best performance for biopsy datasets whereas sine function was superior for cytology. Both logarithmic and sine functions performed the best for the Hinselmann dataset, while Z-score was best for the Schiller dataset. Various Feature Selection Techniques (FST) methods were applied to the transformed datasets to identify and prioritize important risk factors. The outcomes of this study indicate that appropriate system design and tuning, machine learning methods and classification are able to detect CC accurately and efficiently in its early stages using clinical data.


Assuntos
Neoplasias do Colo do Útero , Algoritmos , Análise por Conglomerados , Detecção Precoce de Câncer , Feminino , Humanos , Aprendizado de Máquina , Aprendizado de Máquina Supervisionado , Neoplasias do Colo do Útero/diagnóstico
7.
Comput Biol Med ; 136: 104672, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34315030

RESUMO

Machine learning and data mining-based approaches to prediction and detection of heart disease would be of great clinical utility, but are highly challenging to develop. In most countries there is a lack of cardiovascular expertise and a significant rate of incorrectly diagnosed cases which could be addressed by developing accurate and efficient early-stage heart disease prediction by analytical support of clinical decision-making with digital patient records. This study aimed to identify machine learning classifiers with the highest accuracy for such diagnostic purposes. Several supervised machine-learning algorithms were applied and compared for performance and accuracy in heart disease prediction. Feature importance scores for each feature were estimated for all applied algorithms except MLP and KNN. All the features were ranked based on the importance score to find those giving high heart disease predictions. This study found that using a heart disease dataset collected from Kaggle three-classification based on k-nearest neighbor (KNN), decision tree (DT) and random forests (RF) algorithms the RF method achieved 100% accuracy along with 100% sensitivity and specificity. Thus, we found that a relatively simple supervised machine learning algorithm can be used to make heart disease predictions with very high accuracy and excellent potential utility.


Assuntos
Cardiopatias , Aprendizado de Máquina Supervisionado , Algoritmos , Humanos
8.
J Genet Eng Biotechnol ; 19(1): 43, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33742334

RESUMO

BACKGROUND: Worldwide, more than 80% of identified lung cancer cases are associated to the non-small cell lung cancer (NSCLC). We used microarray gene expression dataset GSE10245 to identify key biomarkers and associated pathways in NSCLC. RESULTS: To collect Differentially Expressed Genes (DEGs) from the dataset GSE10245, we applied the R statistical language. Functional analysis was completed using the Database for Annotation Visualization and Integrated Discovery (DAVID) online repository. The DifferentialNet database was used to construct Protein-protein interaction (PPI) network and visualized it with the Cytoscape software. Using the Molecular Complex Detection (MCODE) method, we identify clusters from the constructed PPI network. Finally, survival analysis was performed to acquire the overall survival (OS) values of the key genes. One thousand eighty two DEGs were unveiled after applying statistical criterion. Functional analysis showed that overexpressed DEGs were greatly involved with epidermis development and keratinocyte differentiation; the under-expressed DEGs were principally associated with the positive regulation of nitric oxide biosynthetic process and signal transduction. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway investigation explored that the overexpressed DEGs were highly involved with the cell cycle; the under-expressed DEGs were involved with cell adhesion molecules. The PPI network was constructed with 474 nodes and 2233 connections. CONCLUSIONS: Using the connectivity method, 12 genes were considered as hub genes. Survival analysis showed worse OS value for SFN, DSP, and PHGDH. Outcomes indicate that Stratifin may play a crucial role in the development of NSCLC.

9.
Brief Bioinform ; 22(2): 1451-1465, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33611340

RESUMO

This study aimed to identify significant gene expression profiles of the human lung epithelial cells caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. We performed a comparative genomic analysis to show genomic observations between SARS-CoV and SARS-CoV-2. A phylogenetic tree has been carried for genomic analysis that confirmed the genomic variance between SARS-CoV and SARS-CoV-2. Transcriptomic analyses have been performed for SARS-CoV-2 infection responses and pulmonary arterial hypertension (PAH) patients' lungs as a number of patients have been identified who faced PAH after being diagnosed with coronavirus disease 2019 (COVID-19). Gene expression profiling showed significant expression levels for SARS-CoV-2 infection responses to human lung epithelial cells and PAH lungs as well. Differentially expressed genes identification and integration showed concordant genes (SAA2, S100A9, S100A8, SAA1, S100A12 and EDN1) for both SARS-CoV-2 and PAH samples, including S100A9 and S100A8 genes that showed significant interaction in the protein-protein interactions network. Extensive analyses of gene ontology and signaling pathways identification provided evidence of inflammatory responses regarding SARS-CoV-2 infections. The altered signaling and ontology pathways that have emerged from this research may influence the development of effective drugs, especially for the people with preexisting conditions. Identification of regulatory biomolecules revealed the presence of active promoter gene of SARS-CoV-2 in Transferrin-micro Ribonucleic acid (TF-miRNA) co-regulatory network. Predictive drug analyses provided concordant drug compounds that are associated with SARS-CoV-2 infection responses and PAH lung samples, and these compounds showed significant immune response against the RNA viruses like SARS-CoV-2, which is beneficial in therapeutic development in the COVID-19 pandemic.


Assuntos
COVID-19/complicações , Hipertensão Pulmonar/complicações , SARS-CoV-2/isolamento & purificação , Algoritmos , Biomarcadores/metabolismo , COVID-19/metabolismo , COVID-19/virologia , Ontologia Genética , Humanos , Hipertensão Pulmonar/metabolismo , Armazenamento e Recuperação da Informação , MicroRNAs/metabolismo , Filogenia , Mapas de Interação de Proteínas , Fatores de Transcrição/metabolismo
10.
Brief Bioinform ; 22(2): 1254-1266, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33024988

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is accountable for the cause of coronavirus disease (COVID-19) that causes a major threat to humanity. As the spread of the virus is probably getting out of control on every day, the epidemic is now crossing the most dreadful phase. Idiopathic pulmonary fibrosis (IPF) is a risk factor for COVID-19 as patients with long-term lung injuries are more likely to suffer in the severity of the infection. Transcriptomic analyses of SARS-CoV-2 infection and IPF patients in lung epithelium cell datasets were selected to identify the synergistic effect of SARS-CoV-2 to IPF patients. Common genes were identified to find shared pathways and drug targets for IPF patients with COVID-19 infections. Using several enterprising Bioinformatics tools, protein-protein interactions (PPIs) network was designed. Hub genes and essential modules were detected based on the PPIs network. TF-genes and miRNA interaction with common differentially expressed genes and the activity of TFs are also identified. Functional analysis was performed using gene ontology terms and Kyoto Encyclopedia of Genes and Genomes pathway and found some shared associations that may cause the increased mortality of IPF patients for the SARS-CoV-2 infections. Drug molecules for the IPF were also suggested for the SARS-CoV-2 infections.


Assuntos
COVID-19/complicações , Fibrose Pulmonar Idiopática/complicações , SARS-CoV-2/genética , COVID-19/genética , COVID-19/virologia , Conjuntos de Dados como Assunto , Células Epiteliais/virologia , Ontologia Genética , Genes Virais , Humanos , Pulmão/citologia , Pulmão/virologia , Transcriptoma
11.
Cell Mol Biol (Noisy-le-grand) ; 66(7): 152-160, 2020 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-33287935

RESUMO

With the advancement and development of sophisticated bioinformatics tools, the area of computational bioinformatics and systems biology analysis is expanding day by day. The bipolar or manic-depressive disorder might be characterized as one of the most crippling mental problems that affect the people of early age and grown-ups. The objective of the present study was to investigate the association between genetic mutations in the four above listed diseases and to create a Protein-protein interaction (PPI) network or common pathways. Firstly, we need to find out the genetic relationship between them. Thus it will help us to understand the genetic association between them and help to develop the drug design for all the diseases. Genes responsible for these diseases are gathered, pre-processed, processed and mining using python scripts. This exploration is expected to carry out further measurements in the field of drug structure and also contributes to the biological and biomedical sectors.


Assuntos
Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/genética , Biologia Computacional , Descoberta de Drogas , Análise por Conglomerados , Interações Medicamentosas , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Ligação Proteica , Mapas de Interação de Proteínas/genética , Fatores de Transcrição/metabolismo
12.
Data Brief ; 19: 76-81, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29892619

RESUMO

In this research work a perfectly circular lattice Photonic Crystal Fiber (PCF) based surface Plasmon resonance (SPR) based sensor has been proposed. The investigation process has been successfully carried out using finite element method (FEM) based commercial available software package COMSOL Multiphysics version 4.2. The whole investigation module covers the wider optical spectrum ranging from 0.48 µm to 1.10 µm. Using the wavelength interrogation method the proposed model exposed maximum sensitivity of 9000 nm/RIU(Refractive Index Unit) and using the amplitude interrogation method it obtained maximum sensitivity of 318 RIU-1. Moreover the maximum sensor resolution of 1.11×10-5 in the sensing ranges between 1.34 and 1.37. Based on the suggested sensor model may provide great impact in biological area such as bio-imaging.

13.
Data Brief ; 21: 700-708, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30666315

RESUMO

In this article, dataset and detailed data analysis results of Type-1 Diabetes has been given. Now-a-days Type-1 Diabetes is an appalling disease in Bangladesh. Total 306 person data (Case group- 152 and Control Group- 154) has been collected from Dhaka based on a specific questioner. The questioner includes 22 factors which were extracted by research studies. The association and significance level of factors has been elicited by using Data mining and Statistical Approach and shown in the Tables of this article. Moreover, parametric probability along with decision tree has been formed to show the effectiveness of the data was provided. The data can be used for future work like risk prediction and specific functioning on Type-1 Diabetes.

14.
Data Brief ; 12: 227-233, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28459094

RESUMO

This article represents the data set of micro porous core photonic crystal fiber based chemical sensor. The suggested structure is folded cladding porous shaped with circular air hole. Here is investigated four distinctive parameters including relative sensitivity, confinement loss, numerical aperture (NA), and effective area (Aeff). The numerical outcomes are computed over the E+S+C+L+U communication band. The useable sensed chemicals are methanol, ethanol, propanol, butanol, and pentanol whose are lies in the alcohol series (Paul et al., 2017) [1]. Furthermore, V-parameter (V), Marcuse spot size (MSS), and beam divergence (BD) are also investigated rigorously. All examined results have been obtained using finite element method based simulation software COMSOL Multiphysics 4.2 versions with anisotropic circular perfectly matched layer (A-CPML). The proposed PCF shows the high NA from 0.35 to 0.36; the low CL from ~10-11 to ~10-7 dB/m; the high Aeff from 5.50 to 5.66 µm2; the MSS from 1.0 to 1.08 µm; the BD from 0.43 to 0.46 rad at the controlling wavelength λ = 1.55 µm for employing alcohol series respectively.

15.
Appl Opt ; 56(12): 3477-3483, 2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-28430216

RESUMO

In this paper, a novel polarization-maintaining single-mode photonic crystal fiber (PCF) has been suggested for terahertz (THz) transmission applications. The reported PCF has five layers of hexagonal cladding with two layers of porous core. The cladding and core territory of the PCF are constituted by circular and elliptical air cavities, accordingly acting as a dielectric medium. Different geometrical parameters of the proposed PCF including pitches and diameters of circular air holes with the major and minor axes of elliptical air cavities being varied with the optimized structure. Various effects on the proposed PCF such as eccentricity and porosity effects are also carefully investigated. The numerical process is investigated by one of the most popular methods, the finite element method (FEM). All numerical computational results have revealed the ultrahigh birefringence in the order of 1.19×10-02 as well as the ultralow bulk absorption material loss of 0.0689 cm-1 at the 1 THz activation frequency. Besides, the V-parameter is also investigated for checking the proposed fiber modality. The proposed single-mode porous core hexagonal PCF is expected to be useful for convenient broadband transmission and numerous applications in the areas of THz technology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...